Drugs affecting motor system

Jan Strojil
Department of Pharmacology

May 16 2005

Introduction

- 2 Presynaptic modulation
- 3 Peripheral muscle relaxants
 Non-depolarising
 Depolarising
 Direct relaxants
- 4 Central muscle relaxants
- **5** Transmission enhancing drugs

Enhancing drugs

Muscle relaxation: mechanism of action

Muscle relaxation: mechanism of action

Introduction

Muscle relaxing agents

- intubation, surgery, bone reposition, intoxications, ventilation, electroconvulsions...
- spasticity (MS, blepharospasms)
- malignant hyperthermia, neuroleptic malignant sy
- cosmetics (botulinum toxin)

Drugs enhancing transmission

- termination of relaxation
- myastenia gravis
- Lambert-Eaton syndrome

Physiology

Reproduced from Lüllmann et al, Farmakologie a toxikologie 15. vydání, Grada 2005

Introduction

Outline

- IntroductionIndicationsPhysiology
- 2 Presynaptic modulation
- Peripheral muscle relaxants
 Non-depolarising
 Depolarising
 Direct relaxants
- 4 Central muscle relaxants
- Transmission enhancing drugs

Introduction

Botulinum toxin

- protein produced by Cl. botulinum
- presynaptic blockade
- blocks ACh release
- inactivates SNAP 25

β-bungarotoxin

Botulinum toxin: indications

- blepharospasm
 - spasm of m. orbicularis oculi
- local spasms

• cosmetics – wrinkles

Outline

- IntroductionIndicationsPhysiology
- 2 Presynaptic modulation
- 3 Peripheral muscle relaxants
 Non-depolarising
 Depolarising
 Direct relaxants
- 4 Central muscle relaxants
- Transmission enhancing drugs

Peripheral relaxants: physiology

Reproduced from Lüllmann et al, Farmakologie a toxikologie 15. vydání, Grada 2005

Introduction

non-depolarising vs. depolarising

- Drugs derived from plant alkaloids (Strychnos a Chondrodendron).
- First mentioned in 15th century, arrow poison used by South American Indians.
- Curaré = "poison" & "bird"

Non-depolarising drugs: history

- 15th century Sir Walter Raleigh
 - described the use of curare by Indians
- 1803 Alexander von Humboldt
 - brought curare to Europe
- 1825 Charles Waterton
 - experiments on donkeys
- 1850 Claude Bernard
 - experiments on frogs, mechanism of action
- 1912 Rudolf Böhm and Arthur Läwen
 - "Über die Verbindung der Lokalanästhesie mit der Narkose, über hohe Extraduralanästhesie und epidurale Injektion anästhesierender Lösungen bei tabischen Magenkrisen"
- 1935 Harold King
 - structure of d-tubocurarine
- 1957 Daniel Bovet
 - Nobel Prize

Non-depolarising drugs: curare

- a mixture
 - main active substance
 d-tubocurarine and toxiferin
- tubocurare, kalabashcurare
- no absorption
 - quaternary ammonium
 - no IA
- fast acting

Non-depolarising drugs

- mechanism: ACh-R blockage
- different susceptibility
 - intercostal muscles last
- no BBB crossing
 - no influence on consciousness
 - anesthesia then relaxation!
- direct histamine liberators, hypotension

Non-depolarising drugs

pancuronium

- 5× more potent than tubocurarine, faster
- lasts for about 1 hour, excreted by kidneys

vecuronium

• the same, faster, shorter

rocuronium

extremely fast, medium acting

atracurium

Hoffman elimination kinetics, fast

mivacurium

- suitable for long term relaxation (ventilation)
- BW 785 U
 - fast and short

"Breathe deeply and count to three."

Non-depolarising drugs: side effects

- Death
 - therapeutic use of lethal doses
- Histamine liberation
- Hypotension
 - esp. patients treated for hypertension
- Ganglion blockade

Peripheral relaxants: physiology

Introduction

non-depolarising vs. depolarising

Enhancing drugs

Peripheral relaxants: depolarising

- Both affinity and IA
- Suxamethonium
 - two ACh molecules linked
 - slow degradation = long depolarisation
- Use: short term relaxation
 - less used today

Peripheral relaxants: suxamethonium

• Side effects:

- muscle pain
- effect on ganglia, vegetative symptoms
- hyperkalemia
- increased intraocular pressure
- dangerous in combinations (halothane)
 - malignant hyperthermia

Peripheral relaxants: direct relaxants

Reproduced from Lüllmann et al, Farmakologie a toxikologie 15. vydání, Grada 2005

Peripheral relaxants: direct relaxants

Dantrolene

- blocks Ca release from sarcoplasmic reticulum
- decreases strength of contraction
- used in spastic states MS, cerebral or spinal trauma
- treatment of malignant hyperthermia

Malignant hyperthemia

Outline

- IntroductionIndicationsPhysiology
- 2 Presynaptic modulation
- Peripheral muscle relaxants
 Non-depolarising
 Depolarising
 Direct relaxants
- 4 Central muscle relaxants
- **5** Transmission enhancing drugs

Spinal cord

- GABA agonists (gama aminobutyric acid)
- GABA_{A/B} receptors

Central relaxants: indications

- central spasticity
 - multiple sclerosis
 - cerebrospinal trauma
 - paralysis
 - arthritis spasticity
 - chronic back pain

Central relaxants: benzodiazepines

- covered already in psychopharmacology
- allosteric effect on GABA_A-R
- main agents:
 - diazepam
 - tetrazepam

Central relaxants: tizanidine, baclofen and others

- tizanidine (Sirdalud®)
 - mechanism not clear yet
- baclofen (Lioresal®)
 - beta-(p-chlorphenyl)-gamma-aminobutyric acid
 - direct agonist at GABA_B
- mephenoxalone (Dorsiflex®)
- guaifenesin (Guajacuran®)

Other drugs

Outline

- IntroductionIndicationsPhysiology
- 2 Presynaptic modulation
- Peripheral muscle relaxants
 Non-depolarising
 Depolarising
 Direct relaxants
- 4 Central muscle relaxants
- **5** Transmission enhancing drugs

Acetylcholinesterase inhibitors

- covered in Parasympathetic system
- syntostigmine, physostigmine, neostigmine, ...
 - termination of relaxation
 - combination with atropine
 - Myastenia gravis treatment
 - decrease in ACh-R numbers
 - Lambert-Eaton syndrome

thank you for your attention